% World Scientific

vwwworldselentitic.cem

Vol. 17, No. 9 {2006) 1313-1325

Intematvional Joumal of M odem Physics C \
© W oxld Scientiic Publishing C om pany

SHOCK PHYSICS DATA RECONSTRUCTION
USING SUPPORT VECTOR REGRESSION

NIKITA A.SAKHANENKQO* and GEORGE F.LUGER'

Com puter Science D gpartm ent, University of Naw M exico
M SCO0L 1130, 1 University of New M exico
A buquernue, NM 87131, USA
*sanik@es. unm.eduy
Tluger@ csanm .ede

HANNA E.MAKARUK?!, JOYSREE B. AUBREY! and DAVID B.HOLTKAM BT

Physics D fvision, Los A Jam os N ational Lekoratory
D410 LANL, Los Alam os, NM B7545, USA
thanna m @ lanlgov
$xme anlgov
Tanckam p@ nlgov

R eceived 26 June 2006
Revised 31 July 2006

This paper considers a set of shock physics experin ents thaz Investigate how m ateri-
als respond to the extrem es of defonn ation, pressure, and tem perature when exposed
to shodk waves. Due to the com pledity and the cost of these tests, the available e
perin ental data set is often very sparse. A support vector m achine 1BVHM ) technigue
&y regression is used for data estin ation of velocity m easuyem ents from the underhmg
experim ents. Because of good generalization perform ance, the VM m ethod success-
fully mterpolates the experin entzl data. The analysis of the resulting velocity surface
provides m ore nthrn ation on the physical phenom ena of the experin ent. A dditionally,
the estin ated data can be used to identify outlier data sets, as well as 0 fncrease the
understanding of the other data from the experim ent.

K eywords: Support vector regression; data extrapolation; V ISAR ; shodk waves; high
explosive m aterial dam age and gpall.
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1. Introduction

Experimental shock physics studies how materials behave under the extremes of
deformation, pressure, and temperature, when shock waves interact with them.!

*C omesonding author.
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Most often these strong shock waves are produced by using high explosives or
propellant guns. Many different diagnostic techniques? have been used to investigate
material’s response to extreme conditions.

Usually, experimental equipment is destroyed during the test due to the exposure
to the shock waves. Because of this, experiments are sometimes quite expensive and
complex. In order to conduct a thorough investigation of one physical property as
a functicn of another, a number of experiments have to be repeated at significant
cost and compexity. As the result, the data set available to a researcher is often
very sparse: There may be a small number of experiments, or sach experlment can
be sampled with only a few diagnostics.

In this paper we apply a support vector machine (SVM) technique for regression
to data estimation based on the velocity measurements from the underlying exper-
iment. A Velocity Interferometer System for Any Reflector (VISAR) that provides
the data for this work, records a point velocity of the moving surface after a tin
sample is shocked with high explosives.*~> One can find a more detailed descrip-
tion elsewhere.® The VISAR data presented here describe the behavior of the free
surface of the tin coupon under the effect of a high explosive (HE) generated shock
wave. The analysis of the time dependence of the velocity magnitude can provide
information on the yield strength of the material, and the thickness of the leading
damaged layer that may separate from the bulk material during the shock/release
of the sample.

'The most common use of the SVM technology is for classification, though the
SVM for regression data analysis, used in this paper, is a rapidly growing research
arca. Fields, in which SVM methods were successfully used, include geostatistics,’
bioinformatics,® data mining,? forecasting,!? and others. SVM methods have never
been applied to VISAR data, nor to any shock physics data set. Vannerem ecallt
attempted to analyze simulated high energy physics data using a support vector
classification method. Another application of SVM in the analysis of physics data
is presented by Cai et al,’? describing how the support vector machine is used to
classify sonar signals. Although SVM for regression is rarely applied in physics, some
successful support vector regression applications also exist. In civil engineering,
Dibike et al'® showed how support vector regression techniques can be useful in
the problem of stream flow data estimation based on records of rainfall and other
climatic data

In Sec. 2 we give a description of the underlying experiment and the way the
data are captured. The problem definition — intuitive and formal — is given in
Sec. 3. In Sec. 4 we define a support vector regression method and its advantages.
The features of the data under consideration are given in Sec. 5. In Sec. 6 we
analyse how support vector regression techniques are applied. Finally, we conclude
in Sec. 7.
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2. Underlying Experin ent
2.1. Shock test overview

The data used in this paper are acquired from a set of experiments where a metal
coupon is shocked by high explosives, detonated with a single point ignition. Using
recorded data, researchers study the behavior of the damaged /melted metal sample.
Figure 1 shows a schematic view of the initial experimental configuration.

A metal sample is placed on top of & 12.7 mm thick high explosive (HE) disc,
The diameter of the cylindrically shaped sample is the same as that of the HE
disc: 50.8 mm. In order to perform a symmetric single point ignition of the HE
disc, a point detonator is attached to the center of the disk of HE. Note that
the experimental setup is axially symmetric, which is important for reducing the
complexity of further data analysis and providing more intuition about physical
phenomena in the experiment.

A VISAR probe is pointed at the center of the metal sample. During the exper-
iment the probe transmits a laser beam at the top surface of the shocked metal,
and the velocity of this surface is deduced from the Doppler shifted light reflected
from it (see the next section for more details). As a resuls, the time series of the
velocity is recorded during the experiment.

During the same experiment a proton beam is incident perpendicular to the axis
of symmetry. A series of Proton Radiography (pRad) images captures the current
state of the experiment in a series of time steps produced by the focussed proton
beam. PRad imagery is a tomography technique, thus it can be compared to X-ray

Optical
fiber
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Explosion
chamber

Detonator '50.5 mm

Fig, 1. A schematic ifustration of the setup of the underlying experin ent and its connection
with the VISAR systam .
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or gamma ray tomography. Since a pRad image exposure time is less than 50 ns,
this technique is more suitable for recording ultra fast experiments, e.g., up to 20
images are taken in a single experiment, such as the one described in this paper.
Another advantage of the pRad technique is that a proton beam penetrates metal
fragments without heavy attenuation, which is typical for an X-ray beam. In this
paper we focus on VISAR data analysis, whereas other publications® provide more
details about pRad imagery analysis,

In order to identify the changes in physical processes over a set of experiments,
two parameters of the initial experiment setup are varied between different experi-
ments. These parameters are the thickness of a metal coupon and the type of the
metal. For simplicity of this paper, we consider only those experiments that are
performed on tin samples of several selected thicknesses.

2.2. Capturing velocity with VISAR

A Velocity Interferometer System for Any Reflector (VISAR) is a system that
captures changes of the velocity of a moving surface by measuring the Doppler
shift of a laser beam reflected from the surface. Velocity changes as small as a few
meters per second can be detected by the VISAR system.

The general components of a VISAR system, such as lasers, detectors, and
optical elements, are shown in Fig. 1. The laser emits a beam, which is delivered
to the VISAR probe via fiber-optic cables. If the probe is properly focussed, some
of the laser light reflects from the moving surface and gets back into the probe.
After that the captured reflected light is forwarded to the interferometer. Since the
reflected light is Doppler shifted, the interferometer is able to determine the velocity
of the moving surface.

Once the Doppler shifted light is captured by the probe it is transmitted to the
interferometer, shown in Fig. 2, where it is split into two beams. Using optics, one
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Fig.2. A xhenatic Mustration of of the interfarom eter subsysten used n the VISAR system .
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Fig. 3. Vebcities recorded by the VISAR system fom the Sperin ents on tih coupons with
different thicknesses (fom 476 mm to 12.7 mm ).

of the signals is delayed, hence the signals cover different distances. After that the
signals are adjusted so as to make them interfere before they reach the photode-
tectors. The final VISAR information is retrieved from the system by recording the
intensity signals from the photodetectors. More details about the VISAR system
and its operation can be found elsewhere,>~2

Figure 3 shows different time series data produced by the VISAR systemn after
several experiments. The output of a VISAR system agrees well (~ 1%) with ve-
locity results obtained from analyzing the locations of different visible fragments of
a pRad image and calculating their corresponding velocities. 4

3. Problem D efinition

Due to the high cost of the experiments and their complexity, the amount of the
experimental data obtained is limited. Given these limitations, this paper attempts
to tackle the problem of measurements estimation for the missing experiments, or
for those experiments whose VISAR data recordings were not successful, although
other components of the data, such as pRad images, were recorded correctly. This
can potentially allow for a successful interpretation of an experiment, despite errors
in the VISAR data recording, and avoiding the need for repeating the experiment.
One might notice that this problem is strongly connected to the detection of “out-
lier” experiments: those experiments that due to the errors in the initial setup or
for some other reasons went wrong. The experimental data that do not “ft” with
other “good” experiments can be identified by data estimation techniques. Using
data computed by estimation techniques, we can increase the informational cusput
of VISAR and overcome the scarcity of the experiments. Researchers want to un-
derstand all the phenomenea of these experiments, hence using the combination of
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the VISAR data with the data estimations provides more possibilities for better
perception of physical processes than using the VISAR data alone.

In addition, velocity estimations can be compared with different kinds of hy-
drocode models, simulating an experiment under relevant physical laws defined by
a set of physical equations. The initial conditions of a hydrocode simulation are
identical to those of the real experiment. Depending on the type of a hydrocode,
the simulations (frequently called num erical esperin ents) are conducted in two- or
three-dimensional spaces.

Furthermore, velocity estimations can be used to support and even improve
other types of data. The pRad imagery, which is collected during these experiments,
is one such type of data.

3.1. Form al problem

Since each VISAR data point (in a time series that may extend over several mi-
croseconds) is a tuple {tm e, thick, vel) (tin e is the time when the recording took
place, thick is the thickness of the coupon in the experiment, and velis the recorded
velocity), the data form a two-dimensional surface in the three-dimensional space.
Thus, to deal with the problems identified above, we need to reconstruct the two-
dimensional surface using the VISAR data sets.

Mathematically speaking, the problem is to find a regression of velocity on
the thickness of a sample and time. That is, given three random variables T, V,
W corresponding to tine vebcity, and thicknees that map a probability space
(€2, A, P) into a measure space {I", §), we want to estimate coefficients X from some
set A C T such that the error e = V' — (T, W; A) is small, where 1 : I x A - T is
a regression function. Note that most of the time, including the case considered in
this article, I' = R. The variable V, the regression of which we try to find, is called
an obsexrvation. The variables T, W, upon which the regression is based, are called
rEression actors

4. Support Vector R egression
4 1. D efinitdon

The Support Vector Machine (SVM)!® belongs to the so called supervised Jesrming
methods, and like a majority of them needs to be trained using a data set of k
points {{@;,yi}|x: € X,y € Y,i= 1...k}. The SVM method estimates a functional
input/output relationship from this set, assuming that each training date point is
randomly generated by an unknown function f:

flz) =w-¢(z) +b. (1)

Here ¢ is a nonlinear mapping ¢ : X — H from an input space X C R™ to a high.
dimensional feature space H. The parameter b belongs to an output space ¥ C R,
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and w € H. These parameters are obtained by minimizing the regularized rigds
k
R =" L{f{z:),u) + Muwl?,
i=1
that consists of an empirical risk (the first term) and a regularization term (the
second term). The regularization term is defined in such a way that the estimated

function f is flat. We use e-intensive loss function'® as a model for an empirical
risk. The loss function is

L{fz),y) = {Lf(:r)"yl—s, if |flz)—yl > |

, ctherwise

Besides being a supervised learning method, SVM is a kemel method. A kernel K
of a function h 1 A — B defines an equivalence relation on A as follows

K(h) = {(a1,a2)|a1,02 € A, h{a) = h{ax)} CAx A.

Classification problems were among the first applications of SVM. In order to
classify the data, the algorithm transforms the feature space M. It then attempts
to find a hyperplane in the new space that separates the data into two classes
such that the distance between the classes and the plane is maximal. Later the
SVM technique was successfully used for regression estimation (Support Vector
Regression, SVR). SVR produces a model based on only a subset of training data,
since the loss function used during training of SVR ignores all the data points that
are close to the model prediction.

4.2. SVR advantages

There are several attractive features of the SVM approach!” that were decisive
when we chose this method for addressing our problem.

s Good genemlization perimm ance
One attractive feature is the good generalization performance. A unique principle
of structural risk minimization®® is the key to such generalization achievement of
the SVM method.

e Sparse representation
A solution obtained by SVM depends only on a subset of the training dasa, called
srppert vestors This is why the representation of the solution is sparse.

¢ No balm nim a pmoklen
Since training of the SVM is equivalent to solving a linearly constrained quadratic
programming problem, its sclution is unique and globally optimal. Therefore, we
do not need to worry about local minima.

o Kaemelpower
The involvement of kernels in the SVM technique allows us to work with ar-
bitrarily large feature spaces: there is no need to explicitly compute ¢ — the
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mapping from the data space to the feature space, thus aveoiding computing the
dot product of (1).

It is known® that a linear algorithm that uses only dot products can be
transformed to a nonlinear one by replacing all the dot products with a kernel
function. Note that although the SVM algorithm after the kernel transformation
is nonlinear, it is still linear in the feature space (the range of the mapping @).
Since when using the SVM algorithm we apply a kernel instead of w - ¢(z) of
(1), the explicit computation of ¢ is not needed. This kernel transformation of &
linear algorithm to a nonlinear one is known as the kemel trick. 1°

5. Features of V ISA R Velocin etxy

The VISAR data we use in this paper are suitable for application of supervised
learning methods, since the VISAR system captures values of some unknown func-
tion for each given couple (tim e, thickness). Hence the support vector regression
method can be also applied to this task, using the velocity component of each data
point as a target value and the pair of time and thickness components as feature
values. Unfortunately, we cannot apply SVR in a straight forward manner, due to
different features of the VISAR data.

Figure 4(a) presents the entire VISAR data set. As can be seen in the figure, the
data is considerably extended along the time axis. The reason for this is the fact that
the available data set consists of the time series of velocities corresponding to each
experiment included in the set. Recall that throughout each experiment the VISAR
systern measured the velocity of the moving surface every 2 ns for up to 6000 time
steps. Note however that in some experiments the VISAR recordings stop having
useful information (due to high noise and artifacts) earlier than in others. This
happens because the experiments on thinner samples produce a more diffuse moving
surface, velocity of which is harder for the VISAR system to capture, than a moving
surface in the experiments on thicker samples. It has been identified experimentally
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Fig.4. TheavailableV ISAR data set: (@) in three-din ensional T im e X T hickness X Veboity data
space; (b) projkcted on the T in e X Veleity plane together w ith its sm oothed version.
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that SVR performs better on the aligned data; this is why we cropped the data.
by the shortest sequence (1656 time steps). Along the thickness axis the data spans
the thicknesses starting from 6.35 mm up to 12.7 mm with 1.5875 mm step. After
cropping the time series, the data used by the SVM method is combined of 5 time
series with 1656 points each.

Since for different experiments the start of a test (first motion of the tin surface)
and the time step at which the measurements were recorded were different, the
output data have to be time-aligned. The goal of the alignment is to make each
time series start exactly at the moment when the shock wave reaches the top surface
of the coupon bringing the surface to motion. Figure 4(b) shows the projection of
the complete data set on the T im ex Vebcity plane. The abscissa of this figure shows
the amount of time steps, 2 ns each. The dashed lines represent the original time
series, whereas the solid lines show these data after smoothing with a triangular
window.

Note also that the magnitudes of the components’ values of each data point
(sime, thickness, and velocity) are of the drastically different order. The order of
magnitude of the time component is 1075, whereas it is 1 for the thickness compo-
nent, and 10° for the velocity component.

In the next section we show how to deal with the data features of the VISAR
measurements identified above. We also show how to find the optimal SVM config-
uration for the best application.

5. The use of Support V ector R egression Technigues

‘The quality of the resulting regression is affected by several factors. The main one
is the error in the VISAR data that could be the result of tiny misalignments in the
initial experimental setup or other hard-to-control problems during the expriment.
This error together with the error contributed during the data preprocessing affects
the accuracy of the reconstructed surface the most. It is calculated that a VISAR
system measures the velocity values with an absolute error of 3-5%. This error is
an approximation computed from differences between repeated experiments. De-
spite a very small number of repeated experiments which do not support a more
robust statistical analysis, this level of uncertainty is in the range of values gener-
ally accepted by VISAR experimenters.®~% This error together with the noise and a
potential inaccuracy caused by the time alignment of the SVR input data transfers
into the regression result.

The specific features of the VISAR data outlined in the previous section also
affect the accuracy of the reconstructed surface. Recall that the time series recorded
in various experiments have different length. Since it was observed that the SVM
performance improves considerably if the data is aligned, we cut the data by the
shortest time series. Scaling data, coordinates of which are of significantly different
orders of magnitude, also improves the SVM performance.
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The application of SVR to the data at this point (the data that have been time-
aligned, cropped, and scaled) yields overfitted results. For any interval there are
more data points along the time axis than those along the thickness axis, because
the distance between two neighbor points in the time direction is much smaller than
in the thickness direction. In our research we dealt with the overfitting problem by
transforming the data in a custom manner such that the interval between any two
neighbor points is one unit long in any direction.

It is known that SVM with nonlinear kernels performs bester when the dy-
namics of an underlying experiment are nonlinear. Among nonlinear kernels, the
Gaussian Radial Basis Function (RBF) kernel shows good results under the general
smoothness assumption.?® Furthermore, as practice showed, the SVR method with
a simpler than RBF kernel, e.g., a polynomial kernel, trains slower and returns
non-satisfactory results. This is why we chose the Gaussian RBF

k(z,y) = el

ag a kernel for the estimation of a velocity surface.

There are three free parameters in the SVR method with an RBF kernel that
directly influence its execution. These parameters are the RBF radius v, the size &
of the error-insensitive zone, also known as an e~margin or an e-tube, and the
regularization constant C, also called a capacity factor or an upper bound on the
Lagrangian multipliers. Recall that ¢ determines the amount by which a training
point is permitted to diverge from the regression, which directly affects the accuracy
of the regression.

In order to identify the optimal values of the free parameters that lead to the best
application of the SVR method to the VISAR data, we use standard k-fold cross-
validation. After dividing the data set into k parts, we used k — 1 parts for training
the supervised learning machine and the remaining part for its successive validation.
This process is repeated % times using each part only once for validation. At the
end of each cross-validation we computed an {2 error corresponding to a particular
instantiation of the SVR free parameters. The error changes as a function of the
values of these parameters as shown in Fig. 5.

From Fig. 5 we can study the relationship between the free parameters and the
error. For example, we can see that if & and/or ~ increases, then the error also
grows. Note also that the regularizaton constant C' influences the error the most
when the radius v is the smallest. This influence of C' on the error reduces as
grows, becoming negligible when v exceeds 0.3. Furthermore, given a small v, pa-
rameter C changes the error more with a smaller . Finally, after analyzing the
error we identified that it is the smallest when the tuple {g,7,C) is in the range
[(0.001,0.1,0.75) .. .{0.001,0.1,1.0)]. Note that this range provides suboptimal pa-
rameter values. In order to identify a final model that produces the most accurate
velocity surface, expert knowledge was used, i.e., an expert from the physics domain
chose the best surface out of several produced by models with different suboptimal



Sheock Physics D ata Reconstruction U sing Support Vecwr Regression 1323

0.8

¥
Zrror cdhange for &(].25'
Exrror change Far 50,5 -
rror chamge for 90,75 -
0.56 - Frror chonge for 01,0 -
2vor durge for C<1.25

Total & estimatim

L 1 L 4
.z 0.25 0.3 0,35 0.4
Radial Basis Furtion radius (7))

Fig.5. Thedependence of the exvor on the SVM  free param eters.

S rally prrchend can
Hiselichiod i wereeere

Welodity (mvs)

o am 1mn na W 0 e i [E

Time goopn (1 dtep © 2 ng)

(a) {B)

Fig. 6. Prediction results of the SVR method: (a) in three-din ensional T in e X Thidkness X
Vebcity data space; () prejected on the T in e X Vebeity plane, the solid Ines represent experi-
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values. Fig. 6 shows the velocity surface (represented by the dashed lines) estimated
by the SVR method from the given data (showed with the solid lines).

A velocity value for any {tin e, thickness) pair can be easily estimated, once the
velocity surface is found. We can also identify the potentially failed VISAR data
that veers significantly from the surface, assuming that the reconstructed surface is
sufficiently accurate. Much more information about the velocity changes is provided
by the estimated surface together with VISAR readings than from the experimental
data alone. For an experiment, in which only pRad data were successfully recorded,
the surface can provide a velocity time series, enhancing the analysis quality of the

experiment. This, in turn, helps researchers to understand the entire physical system
better,
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Note that in this paper we used the SVM -light implementation of the SVR
method.?

7. Conclugions and Future W ork

An interesting case of VISAR data analysis was discussed in this paper. We sought
to estimate the velocity values between the data points recorded by the VISAR
system. Using the support vector regression method, we successfully reconstructed
the two-dimensional velocity surface in the three-dimensional data space with Tin e,
Thickness, and Velcity as its dimensions. In order to find the optimal values of the
SVR free parameters, a grid search as well as expert knowledge were used. Support
vector regression does not require a large input data ses for preducing good results.
This is very helpful in the environment of expensive and highly complex experiments
providing a limited amount of data points.

The velocity surface delivers a lot of information about the patteras of the veloc-
ity as a function of time and thickness, more than sparse experimentally obtained
VISAR data alone. PRad imagery analysis, hydrocode simulations, and other areas
of analysis of shock physics experiments may also benefit from the VISAR data
enhanced by the velocity estimations. Moreover, the “outlier” experiments, those
tests that for some reason went wrong, can be identified more easily with the help
of the reconstructed velocity surface. The data from an “outlier” experiment will
be substantially different than the data predicted by the surface.

This work can be advanced in several directions, one is to determine a better way
for finding optimal values for the SVM free parameters. Recall that a grid search
and expert knowledge were used, leading to the suboptimal parameter values. It
might be very useful to design an online learning algorithm for SVM parameter
fitting specific to the VISAR data. The usage of a custom kernel instead of an
RBF is another direction of further research. Intuitively, the results of support
vector regression may be improved by using an elliptical kernel that takes into
account the data density along one axis and the data sparsity along the other axis.
Another direction for future work might be to attempt to capture uncertainty in
the surface reconstruction. Currently, SVR returns a point estimate, however it is
more appealing to find a conditional distribution of the target values given the
feature values. Such methods as relvance vector machines, Bayesian SVM, and
other extensions of the original SVM method that employ probabilistic methods
might provide considerably more information abous the underlying experiments.
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